
Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Tesla Dojo Technology
A Guide to Tesla’s Configurable Floating
Point Formats & Arithmetic

02 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

No. of Mantissa bits

1 + 23

1 + 52

No. of Exponent bits

8

11

Exponent Bias Value

127

1023

Tesla Configurable
Float8 (CFloat8)
& Float16 (CFloat16)
Formats

Abstract
This standard specifies Tesla arithmetic formats and methods for the new
8-bit and 16-bit binary floating-point arithmetic in computer programming
environments for deep learning neural network training. This standard
also specifies exception conditions and the status flags thereof. An
implementation of a floating-point system conforming to this standard may
be realized entirely in software, entirely in hardware, or in any combination
of software and hardware.

Keywords
Arithmetic, binary, computer, deep learning, neural networks, training,
exponent, floating-point, format, NaN, Infinity, number, mantissa, subnormal,
denormal, configurable exponent bias, range, precision, rounding mode,
random number generator, stochastic rounding.

Motivation
The original IEEE 754 standard, which was published in 1985 specified
formats and methods for floating-point arithmetic in computer systems—
standard and extended functions with single (32-bit), double (64-bit)
precision. The standard single and double precision formats are shown in
Table 1 below.

The purpose of the standard was to provide a method for computation
with floating-point numbers that will yield the same result whether the
processing is done in hardware, software, or a combination of the two.
The results of the computation will be identical, independent of
implementation, given the same input data. Errors, and error conditions,
in the mathematical processing will be reported in a consistent manner
regardless of implementation.

The above formats have been widely adopted in computer systems, both
hardware and software, for scientific, numeric, and various other computing.
Subsequently, the revised IEEE754 standard in 2008 also included a half
precision (16-bit), only as a storage format without specifying the arithmetic
operations. However, Nvidia and Microsoft defined this datatype in the Cg
language even earlier, in early 2002, and implemented it in silicon in the
GeForce FX, released in late 2002.

The IEEE half precision format has been used not just for storage but
even for performing arithmetic operations in various computer systems,
especially for graphics and machine learning applications. This format
is used in several computer graphics environments including MATLAB,
OpenEXR, JPEG XR, GIMP, OpenGL, Cg, Direct3D, and D3DX.
The advantage over single precision binary format is that it requires
half the storage and bandwidth (at the expense of precision and range).
Subsequently, the IEEE half precision format has been adopted in machine
learning systems in the Nvidia AI processors, especially for training, due to
the significantly increased memory storage and bandwidth requirements
in such applications.

More recently, Google Brain, an artificial intelligence research group at
Google, developed the Brain Floating Point, or BFloat16 (16-bit) format

Format

Single Precision (Float32)

Double Precision (Float64)

Sign bit?

Yes

Yes

Table 1: Floating Point Formats defined by the IEEE 754 Standard

03 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

in their TPU architecture for their machine learning training systems.
The BFloat16 format is utilized in Intel AI processors, such as Nervana
NNP-L1000, Xeon processors (AVX-512 BF16 extensions), and Intel FPGAs,
Google Cloud TPUs and TensorFlow. ARMv8.6-A, AMD ROCm, and CUDA
also support the BFloat16 format. On these platforms, BFloat16 may also
be used in mixed-precision arithmetic, where BFloat16 numbers may be
operated on and expanded to wider data types, since it retains the dynamic
range of the Float32 format. The BFloat16 format differs from the IEEE
Float16 format in the number of bits provisioned for the mantissa and
exponent bits. These two formats are shown Table 2 below.

As deep learning neural networks grow, the memory storage and bandwidth
pressure continue to present challenges and create bottlenecks in many
systems, even with the Float16 and BFloat16 storage in memory.

No. of Mantissa bits

1 + 10

1 + 7

No. of Exponent bits

5

8

Exponent Bias Value

15

127

Format

Table 2: IEEE 16-bit Floating Point and Brain 16-bit Floating Point formats

IEEE Half Precision(Float16)

Brain Floating Point (BFloat16)

Sign bit?

Yes

Yes

04 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Tesla CFloat8 Formats Tesla extended the reduced precision support further, and introduced the
Configurable Float8 (CFloat8), an 8-bit floating point format, to further
reduce the enormous pressure on memory storage and bandwidth in storing
the weights, activations, and gradient values necessary for training the
increasingly larger networks. Unlike the IEEE 754R standard, the purpose
of this standard is mostly to standardize the formats and not necessarily
to provide for portability of code to guarantee identical numerical result
across all platforms.

The IEEE Float16 and Bfloat16 formats described above have a fixed number
of bits allocated to the mantissa and exponent fields and have a fixed
exponent bias. However, eight bits can only accommodate a small number
of mantissa and exponent bits, so some configurability is required to ensure
high accuracy and convergence of the training models.

precision and dynamic range requirements to achieve high training accuracy

number of exponent and mantissa bits, depending on the parameter being
represented. Moreover, the numeric range these parameters span is also

values compared to activations. The latter property allows meeting the
dynamic range requirements of the various parameters using a configurable
bias, instead of increasing the number of exponent bits.

The range of exponent values follows the principle of locality of space
and time during the execution of a training network, and do not change
frequently. Thus, only a small number of such exponent biases are used in
any given execution step, and the appropriate bias values can be learnt
during the training.

The two CFloat8 formats with the fully configurable bias are shown in
Table 3 below.

No. of Mantissa bits

1 + 3

1 + 2

No. of Exponent bits

4

5

Exponent Bias Value

Unsigned 6-bit integer

Unsigned 6-bit integer

Format

Table 3: Tesla configurable 8-bit Floating Point formats

CFloat8_1_4_3

CFloat8_1_5_2

Sign bit?

Yes

Yes

Normalized numbers, Subnormal (denormal) numbers and Zeros are
supported in both CFloat8_1_4_3 and CFloat8_1_5_2 formats. Due
to the limited number of representable exponent values, Infinity and
NaN encodings are not supported. So, the maximum exponent value is
not reserved for encoding NaN and Infinity and just used to represent
normalized floating-point numbers. Any Infinity or NaN operand, or an
overflow in an arithmetic operation will clamp the result to the maximum
representable number in each of these formats.

Numerical value of Zero is represented by an encoding with all zero
Exponent and all zero Mantissa. Encodings with all zero Exponent and
non-zero Mantissa represent denormal numbers.

The numerical value of a normalized floating point number is
(−1)sign × 2exponent−bias × 1.mantissa while the numerical value of a
denormal floating point number is (−1)sign × 2(-bias+1) × 0.mantissa.

05 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

With the configurable exponent bias set to the minimum possible value
(0000002 = 0), the numerical values that can be represented in the
normalized CFloat_1_4_3 format are shown below.

Emin = 00012 − 0000002 = 1; Emax = 11112 − 0000002 = 15

The range of numerical values thus represented is
+/- [1.0002 x 21, 1.1112 x 215].

Similarly, with the exponent bias set to the maximum possible value
(1111112 = 63),

Emin = 00012 − 1111112 = -62; Emax = 11112 − 1111112 = -48

The range of numerical values thus represented is
+/- [1.0002 x 2-62, 1.1112 x 2-48]

For normalized floating point numbers in the CFloat8_1_4_3 format, the
numerical values for exponent bias values of 0, 1, 2, 3,…, 62, 63 are shown in
Table 4 below. The entire exponent range [-62, 15] can be spanned by this
format by reconfiguring the exponent bias appropriately. Please note that
the exponent range with a 4-bit exponent with a fixed bias only spans 15
consecutive exponent values. For example, for bias = 31, only the exponent
range [-30, -16] can be spanned.

Exponent Bias

3

60

1

31

62

0

...

61

2

...

63

Range of Numerical Values

+/-[1.000 x 2-2, 1.111 x 212]

+/-[1.000 x 2-59, 1.111 x 2-45]

+/-[1.000 x 20, 1.111 x 214]

+/-[1.000 x 2-30, 1.111 x 2-16]

+/-[1.000 x 2-61, 1.111 x 2-47]

+/-[1.000 x 21, 1.111 x 215]

+/-[1.000 x 2-60, 1.111 x 2-46]

+/-[1.000 x 2-1, 1.111 x 213]

+/-[1.000 x 2-62, 1.111 x 2-48]

Table 4: Range of numerical values of normalized floating-point numbers
in CFloat8_1_4_3 format for various exponent bias values

06 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Similarly, for normalized floating point numbers in the CFloat8_1_5_2
format, the numerical values for exponent bias values of 0, 1, 2, 3,…, 62, 63
are shown in Table 5 below. Thus, the entire exponent range [-62, 31] can be
spanned by this format by reconfiguring the exponent bias appropriately.
Please note that the exponent range with a 5-bit exponent with a fixed bias
only spans 31 consecutive exponent values. For example, for bias = 31, only
the exponent range [-30, 0] can be spanned.

In the CFloat8_1_4_3 format, an Exponent = 00002 and Mantissa = 0002
represents numerical value of Zero, while Exponent = 00002 and
Mantissa = 0012, 0102, 0112, 1002, 1012, 1102, and 1112 represent the denormal
numbers. The corresponding numerical values are
+/- {0.0012, 0.0102, 0.0112, 0.1002, 0.1012, 0.1102, 0.1112} x 2-bias respectively,
where bias is the 6-bit exponent bias from 0 to 63. Similarly, in the
CFloat8_1_5_2 format, an Exponent = 000002 and Mantissa = 002
represents numerical value of Zero, while Exponent = 000002 and
Mantissa =012, 102, and 112 represent the denormal numbers. The
corresponding numerical values are +/- {0.012, 0.102, 0.112} x 2-bias
respectively, where bias is the 6-bit exponent bias from 0 to 63.

Gradual underflow with denormal handling is supported in both
CFloat8_1_4_3 and CFloat8_1_5_2 formats. These formats have limited
exponent range, and the denormal number support helps increase the
representable numeric range. The 6-bit bias is chosen as an unsigned
integer to skew the range of representable values more on the smaller
numeric values at the expense of larger numerical values, as the
parameters in the deep learning neural networks are normalized within
some [-N,N] bound where N is an integer, and thus tend to span very small
numerical values.

Exponent Bias

3

60

1

31

62

0

...

61

2

...

63

Range of Numerical Values

+/-[1.00 x 2-2, 1.11 x 228]

+/-[1.00 x 2-59, 1.11 x 2-29]

+/-[1.00 x 20, 1.11 x 230]

+/-[1.00 x 2-30, 1.11 x 20]

+/-[1.00 x 2-61, 1.11 x 2-31]

+/-[1.00 x 21, 1.11 x 231]

+/-[1.00 x 2-60, 1.11 x 2-30]

+/-[1.00 x 2-1, 1.11 x 229]

+/-[1.00 x 2-62, 1.11 x 2-32]

Table 5: Range of numerical values of normalized floating-point numbers
in CFloat8_1_5_2 format for various exponent bias values

07 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Arithmetic Operations When used as a storage format only, the two CFLoat8 formats,
CFloat8_1_4_3 and CFloat8_1_5_2, shall support convert operations to and
from the BFloat16 and IEEE Float32 formats. Two modes of rounding should
be supported to convert from BFloat16 and IEEE Float32 formats to the two
CFLoat8 formats—round-to-nearest and stochastic rounding. Stochastic
rounding is implemented with a Random Number Generator (RNG). The
arithmetic performed with stochastic rounding should be consistent and
reproducible when the same seed is used in the RNG. Stochastic rounding
enables probabilistic rounding with a uniform random number generator
and enables statistical parameter updates, such as computing stochastic
gradient descent (SGD) during back propagation in training. Very small
values are accumulated into larger values, and such updates would not

The arithmetic operations that the CFloat8 formats should provide are
implementation dependent. Typically, the CFloat8 formats are used in
mixed precision arithmetic, where the operands stored in CFloat8
format in memory may be operated on and expanded to wider data types,
such as Float32.

happen with IEEE rounding modes. Stochastic rounding is also useful in
various training computes to add random noise which provides regularization
to prevent overfitting.

08 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Tesla CFloat16 Formats Two other formats are also specified for 16-bit floating point numbers,
Signed Half Precision (SHP) and Unsigned Half Precision (UHP) as shown
below. These formats are used to store parameters such as gradients, in
cases where the precision of the CFloat8 formats may be too small to
guarantee the convergence of training networks. The BFloat16 and Float16
formats both have some limitations for quantization. The BFloat16 format
has sufficient range but the precision is very limited to quantize many
parameters, such as gradients, requiring storing in FP32 format. The Float16
format has more precision, but the range is too small to quantize in many
cases, also requiring storing in FP32 format. The SHP and UHP formats offer
the precision of Float16 format while increasing the range of the Float16
format substantially with the configurable bias. The SHP and UHP formats
obviate the storage requirement in FP32 format in most cases, reducing the
memory storage pressure and improving the memory bandwidth further.
The SHP and UHP formats are shown in Table 6 below.

Normalized numbers, Subnormal numbers (denormal) and Zeros are
supported in the SHP format. Infinity and NaN encodings are not supported,
and any overflow, or an Infinity or NaN operand during an arithmetic
operation will clamp the result to the maximum representable number
in the destination SHP format. Infinity and NaN are not supported in the
SHP format since only a small number of exponents can be represented.
So, the maximum exponent value is not reserved for the NaN and Infinity
encodings, and just used to represent normalized floating-point numbers.

Normalized numbers and Zeros are supported in the UHP format.
Denormal encodings are supported but denormal operands and results
are flushed to zero. Infinity and NaN encodings are also supported in the
UHP format as there are more exponent bits than the SHP format to allow
these two encoding with the maximum exponent value. Infinity is encoded
as with all ones Exponent and all zero Mantissa, and NaNs are encoded as
with all ones Exponent and non-zero Mantissa. The NaN propagation and
Infinity result generation for any arithmetic operation with destination in the
UHP format follow the specifications in the IEEE 754R standard. In the UHP
format, Infinity is encoded Exponent =1111112 and Mantissa = 00000000002,
while NaN is encoded as Exponent = 1111112 and Mantissa ≠ 00000000002.
Any operation with a NaN in the destination UHP format is encoded as
a canonical NaN which is encoded as Exponent = 1111112 and Mantissa =
10000000002.

When used as a storage format, the SHP and UHP formats shall support
convert operations to and from the Float32 format. Two modes of
rounding should be supported to convert from IEEE Float32 formats to
the SHP and UHP formats—round-to-nearest and stochastic rounding. The
arithmetic operations that the SHP and UHP formats should provide
are implementation dependent. Typically, these formats are used in
mixed-precision arithmetic, where the operands stored in SHP or UHP
format in memory may be operated on and expanded to wider data types,
such as Float32.

No. of Mantissa bits

1 + 10

1 + 10

No. of Exponent bits

5

6

Exponent Bias Value

Unsigned 6-bit integer

31

Format

Table 6: Tesla configurable 16-bit Floating Point formats

Signed Half Precision (SHP)

Unsigned half Precision (UHP)

Sign bit?

Yes

No

09 Tesla Dojo Technology — A Guide to Tesla’s
Configurable Floating Point Formats & Arithmetic

Exception Status Flags The following exception status flags are supported in operations with
CFloat8, SHP, and UHP operands and results: Invalid, Denormal, Overflow
and Underflow. An arithmetic operation with any denormal operand will
set the denormal exception flag, while an arithmetic operation with any
NaN operand or no useful definable result, as specified by the IEEE 754R
standard, will set the invalid exception flag. Any arithmetic operation with
CFloat8, SHP, and UHP destination that overflows or underflows, will set the
overflow and underflow exception flags respectively. The response to the
setting of the exception flags is implementation dependent.

