

Certain statements in this presentation, including, but not limited to, statements relating to the future development, ramp, production capacity and output rates, supply chain, demand and market growth, cost, pricing and profitability, deliveries, deployment, availability and other features and improvements and timing of existing and future Tesla products and technologies such as Model 3, Model Y, Model X, Model S, Cybertruck, Tesla Semi, Robotaxi, our next generation vehicle platform, our Autopilot, Full Self-Driving and other vehicle software and our energy storage and solar products; statements regarding operating margin, operating profits, spending and liquidity; and statements regarding expansion, improvements and/or ramp and related timing at existing or new factories are "forward-looking statements" that are subject to risks and uncertainties. These forward-looking statements are based on management's current expectations, and as a result of certain risks and uncertainties, actual results may differ materially from those projected. The following important factors, without limitation, could cause actual results to differ materially from those in the forward-looking statements: uncertainties in future macroeconomic and regulatory conditions arising from the current global pandemic; the risk of delays in launching and manufacturing our products and features cost-effectively; our ability to grow our sales, delivery, installation, servicing and charging capabilities and effectively manage this growth; consumers' demand for electric vehicles generally and our vehicles specifically; the ability of suppliers to deliver components according to schedules, prices, quality and volumes acceptable to us, and our ability to manage such components effectively; any issues with lithium-ion cells or other components manufactured at Gigafactory Nevada and Gigafactory Shanghai; our ability to ramp Gigafactory Shanghai, Gigafactory Berlin-Brandenburg, Gigafactory Texas and new factories in accordance with our plans; our ability to procure supply of battery cells, including through our own manufacturing; risks relating to international expansion; any failures by Tesla products to perform as expected or if product recalls occur; the risk of product liability claims; competition in the automotive and energy product markets; our ability to maintain public credibility and confidence in our long-term business prospects; our ability to manage risks relating to our various product financing programs; the status of government and economic incentives for electric vehicles and energy products; our ability to attract, hire and retain key employees and qualified personnel and ramp our installation teams; our ability to maintain the security of our information and production and product systems; our compliance with various regulations and laws applicable to our operations and products, which may evolve from time to time; risks relating to our indebtedness and financing strategies; and adverse foreign exchange movements. More information on potential factors that could affect our financial results is included from time to time in our Securities and Exchange Commission filings and reports, including the risks identified under the section captioned "Risk Factors" in our annual report on Form 10-K filed with the SEC on January 31, 2023. Tesla disclaims any obligation to update information contained in these forward-looking statements whether as a result of new information, future events or otherwise.

Master Plan 3

Master Plan 3

Sustainable Energy For All of Earth

The Plan To Eliminate Fossil Fuels

1. Repower the Existing Grid With Renewables

35%

Reduction In Fossil Fuel Use

Full Sustainability

24TWh

10TW

\$0.8T

Stationary Storage Solar + Wind

2. Switch to Electric Vehicles

21%

Reduction In Fossil Fuel Use

115TWh

4TW

\$7.0T

Vehicle Batteries & Stationary Storage Solar + Wind

Manufacturing Investment Needs

2. Switch to Electric Vehicles

21%

Reduction In Fossil Fuel Use Full
Sustainability

115TWh

4TW

\$7.OT

Vehicle Batteries & Stationary Storage Solar + Wind

EVs Use Energy Far More Efficiently

21%

Reduction In Fossil Fuel Use

Tesla Model 3

More Efficient Oil Well to Wheel

Toyota Corolla

3. Switch To Heat Pumps in Homes, Businesses & Industry

22%

Reduction In Fossil Fuel Use

Full Sustainability

6TWh

5TW

\$0.3T

Stationary Storage Solar + Wind

Heat Pumps Move Heat, They Don't Create It

22%

Reduction In Fossil Fuel Use

Sustainability

4. Electrify High Temp Heat Delivery & Hydrogen

17%

Reduction In Fossil Fuel Use

48TWh

6TW

\$0.8T

Stationary Storage Solar + Wind

4. Electrify High Temp Heat Delivery & Hydrogen

17%

Reduction In Fossil Fuel Use

Full Sustainability

48TWh

6TW

\$1.OT

Stationary Storage Solar + Wind

5. Sustainably Fuel Planes & Boats

5%

Reduction In Fossil Fuel Use

44TWh

4TW

\$0.8T

Sustainability

Vehicle Batteries & Stationary Storage Solar + Wind

Stacking Up the Investments in Our Sustainable Future

If We Grow our Production Capacity as Shown by 2030 We Can Be 100% Sustainable by 2050

A Sustainable Energy Economy Is 60% The Cost of Continuing Fossil Fuel Investments

More Than Enough Renewable Resources Available

More Than Enough Renewable Resources Available

A Sustainable Energy Economy Involves Less Mineral Extraction

EACH TRUCK IS 1 GIGATON

Everything Else

Fossil Fuel Extraction

A Sustainable Energy Economy Involves Less Mineral Extraction

EACH TRUCK IS 1 GIGATON

Everything Else

Sustainable Economy Materials

The Resources Are There To Support the Transition

Cumulative Demand Until 2050, Relative to 2023 USGS Estimated Resources

And History Teaches: The More We Look, The More We Find

Recycling Will Further Reduce Mineral Demand

01 Vehicle Design

Franz von Holzhausen, Lars Moravy

The Early Days

MODEL S

2012 Model S

DESIGN

ENGINEERING

Model 3

Combining the Processes for the Future

1

DESIGN

ENGINEERING

MANUFACTURING

AUTOMATION

Current Way of Assembling a Vehicle

Current Way of Assembling a Vehicle

More People Can Work Simultaneously on Next Generation Vehicle

44%

30%

Operator Density Improvement Space Time Efficiency Improvement

Parallel & Serial Assembly

Unboxed Process

Unboxed Process

Next Generation Vehicle Manufacturing Efficiencies

02 Powertrain

Colin Campbell

Relentless Focus on Efficiency

Small SUVs (AWD) EPA Range in Miles/kWh

Source: OEM Websites & Other Publicly Available Sources

Efficiency Helps Us Scale

MODEL 3 POWERTRAIN FROM 2017-2022

20%

25%

75%

65%

Lighter Drive Unit Less Rare Earth Materials Smaller Powertrain Factory Cheaper Powertrain Factory

Custom Designed Packages & Microprocessors for Power Electronics

Powerful In-House Software

KEY SIMULATION TOOLS DEVELOPED BY TESLA

Powerful In-House Software

KEY SIMULATION TOOLS DEVELOPED BY TESLA

Powerful In-House Software

KEY SIMULATION TOOLS DEVELOPED BY TESLA

In-House Manufacturing Line & Automation Design

Our Next Drive Unit Will Be Even More Scalable

75%

ANY

50%

~\$1,000

Reduction In Silicon Carbide Battery Chemistry Accepted Reduction In Factory Footprint

All-In Cost

Rare Earths Required

MODEL Y

~500g

~10g

~10g

Rare Earth 1

Rare Earth 2

Rare Earth 3

Rare Earths Required

NEXT GENERATION PERMANENT MAGNET MOTOR

Og

Og

Og

Rare Earth 1

Rare Earth 2

Rare Earth 3

Lower Cost & Higher Efficiency Drive Units Using Zero Rare Earths

03 Electronic Architecture

Pete Bannon

Model S 2012

COMPLEX LOW VOLTAGE ARCHITECTURE

It's Been Messy

From Model S to Model 3

IMPROVED LOW VOLTAGE ARCHITECTURE

MODEL 3

Designed Our Own Controllers, With More To Come

% OF TESLA-DESIGNED CONTROLLERS

Switched From Fuse & Relay to Electronic Fuses

METRIC	FUSE + RELAY	E-FUSE
FAULT REACTION TIME	SECONDS	< 1 MILLISECOND
MOVING PARTS	YES (RELAYS)	NO (SOLID STATE FETs)
CONTROL & DIAGNOSTICS	COARSE	GRANULAR
FIRMWARE RESETTABLE	NO	YES

FUSE + RELAYS

ELECTRONIC FUSES

Replaced Lead Acid With Lithium Ion Batteries

LITHIUM ION BATTERY

Mass Reduction

4-YEAR REPLACEMENT

LIFETIME

Reduced Costs of Model 3/Y Center Display

The Future of Low Voltage Architecture

CYBERTRUCK, OPTIMUS, & FUTURE VEHICLES ALL 48V

Cybertruck

FURTHER IMPROVING LOW VOLTAGE ARCHITECTURE

Future of Tesla Low Voltage

2012 MODEL S CYBERTRUCK NEXT GENERATION VEHICLE

Simpler & Cheaper Electronic Architecture, With 100% of Controllers Designed In-House

04 Software David Lau

Relentless Improvement Via Updates & Data Insights

Real World Crash Tests: Fewer Dummies, More Smarts

Enabling Plaid-Speed Product Development

123M MILES DRIVEN PER DAY | 1.9M CHARGE SESSIONS EVERY DAY

Total Vehicle Miles, All Platforms

Software That Spans the Entire System

Leveraging Vertical Integration

PREDICTIVE AIR SUSPENSION

05 Full Self-Driving

Ashok Elluswamy

Architecture for a Generalized Vision System

Using State-of-the-Art Al for Modeling

Also Solve Complex Planning Problems Using Al

10ms

Joint Planning for Each Configuration

50ms

Desired Planner Execution Time

Data Alone Can Improve Corner Cases

Large Networks Need Large Clusters

14K GPUs

4K For Auto Labeling

10K for Training

30PB DISTRIBUTED VIDEO CACHE

160B Frames

500K Videos Rotating Through Cache/Day

400K Video Instantiations per Second:

OCCUPANCY NETWORK RECIPE

Pick 1.44B frames

Train for 100.000 GPU-hours at 90 C*

Scalable FSD = AI + Data + Compute

Higher Utilization

Higher Safety

O6 Charging Rebecca Tinucci

Industry's Lowest Deployment Costs

40% Improvement in Per kWh Costs

Trip Planner Powers Efficient Routing

30% Quicker Charge Times

Charging the Fully-Electrified Fleet

Ready To Serve All Vehicles

Maximize Convenient, Renewably-Powered Daytime Charging

Can't Forget To Do Cool S***

07 Supply Chain Karn Budhiraj, Roshan Thomas

Tesla Supply Chain

The Most Powerful In-Vehicle Computer

7K+

Components

1.4ms

Between Each
Component Assembled
Into a Car Computer

95%

Reduction in Labor

Inbound Complexity

16M

1B

685

45

Pallets & Racks Received in 2022 Electronic Components
Shipped Each Week

Global Service Locations

Countries

Supply Chain Hell

Shipping disruption: Why are so many queuing to get to the US?

Global shortage in computer chips 'reaches crisis point'

Car sales dampened by chip shortage, COVID measures

BUSINESS | AUTOS & TRANSPORTATION | AUTOS INDUSTRY

Global Chip Shortage Set to Worsen for Car Makers

'It's Not Sustainable': What America's Port Crisis Looks Like Up Close

Why the Chip Shortage Is So Hard to Overcome

The Global Fight Over Chips Is About to Get Even Worse

Supply chain chaos is already hitting global growth. And it's about to get worse

The supply chain crisis and US ports: 'Disruption on top of disruption'

No End In Sight For The COVID-Led Global Supply Chain Disruption

Scaling Against the Odds

Semiconductor Industry Can Support Our Growth

	2023	FUTURE
VEHICLES	1.8M+	20 M
SILICON WAFERS USED 12" EQUIVALENT	0.7 M	8 M
GLOBAL WAFER CAPACITY	~135M	200M
TESLA SHARE	0.5%	< 5 %

Before Heat Pump

Next Generation Thermal Architecture

HEAT PUMP

100+

SUBCOMPONENTS

Numerous Manufacturing Processes:

Forging, Stamping, Injection Molding,
Brazing, Heat Treatment, Plastic Welding,
Water Jetting, Machining, Ultrasonic
Cleaning, Air Flushing, Soldering, Leak
Testing, Complex Assembly

Evolution of the Heat Pump Line

WHERE WE STARTED

MANUAL

SEMI-AUTOMATED

WHERE WE ARE NOW

SIMULATED

AUTOMATED

Doing More With Less

Manufacturing 08 Tom Zhu, Drew Baglino

Completed Gigafactory Shanghai in 9.5 Months

Hitting New Milestones in 2023

FOR TOTAL VEHICLE PRODUCTION

First Million
12 Years

Fourth Million 7 Months

What It Takes To Ramp a Gigafactory

90% OVERALL EQUIPMENT EFFECTIVENESS & 45 SECOND CYCLE TIME

Future Cell Factories, Too

THERE IS NO SPOON

Future Cell Factories, Too

THERE IS NO SPOON

Simplicity Up, Investment Down, Scale Up

Manufacturing is the Cornerstone of a Sustainable Future New Waves of Production Lines Incoming **Build Production Lines Faster** Ramp Faster Through Learnings

Energy 09 Drew Baglino, Mike Snyder

Growth Is Accelerating

65% CAGR SINCE 2016

14 Years of in-House Power Electronics Expertise

1.4+ TW DEPLOYED

Retiring Fossil Fueled Power Plants With Software

World 1st: Tesla Batteries Providing Inertia Services At Scale

Tesla has a new product called 'Virtual Machine Mode' coming to its 'Big Battery'

How Did We Get Here

RELENTLESS FOCUS ON SPEED OF EXECUTION

Tesla Electric Unlocks the Full Value of Distributed Energy & Storage

ENABLING OUR CUSTOMERS TO BECOME THEIR OWN UTILITY

Tesla Electric Real-Time
Dispatch of Solar and
Powerwall to Benefit the Grid

Tesla Electric Rollout Plan

Available Today 🏠

For homes with Powerwall in competitive retail electricity markets in Texas

Tesla Electric Rollout Plan

Coming in July to Texas

Unlimited overnight home charging

\$30/month

This Is Just the Beginning

01 Impact

Laurie Shelby, Brandon Ehrhart

The Team is Growing Rapidly

1/2 WORK IN MANUFACTURING

Tesla Global Employee Count

Engineers Want to Work Here

US Engineering Students' Rankings

Employer	2022 Ranking
SpaceX	1
Tesla	2
NASA	3
Lockheed Martin	4
Boeing	5
Apple	6
Google	7
Microsoft	8
Northrop Grumman	9
Raytheon Technologies	10

As Employee Engagement Increases, Safety Improves

Sustainability & Impact is Everything We Do

Our Products Generate More Energy Than Our Products & Factories Consume

Tesla Cumulative Net Energy Impact: 2012-2021

Energy Produced
Tesla Solar Panels

25.39 (TWh

Energy Consumed

Tesla Factories & Other Facilities

25.27 (TWh)

Energy Used at Tesla Factories & Other Facilities Energy Used to charge all Tesla vehicles

Our Vehicles Emit Less Emissons Than Gas Vehicles

INCLUDING BOTH MANUFACTURING & USE

O2 Financials Zach Kirkhorn

We Continue To Reduce Cost of Our Existing Products

Cost Reductions Come From Everywhere

Volume Growth Productivity Overhead Efficiency Improvements

Engineering Changes Localization Supplier Scale

New Gen Vehicle Will Enable Step Change in Cost & Volume

Total Cost of Ownership per Mile Over 5 Years

Tight Operating Expense Control To Enable Operating Cash Flow

Excludes digital assets gain/loss, stock-based compensation, material one-time items 2021 figure excludes \$340M payroll tax on CEO award option exercise

Industry Leading SG&A per Car Enabling Improved Affordability

Efficiency Improvements

FINANCE CASE STUDY

Continued Improvement in Internal Process Efficiency

Efficiency Improvement

Performance & Capabilities

4x

North American Sales

4x

Order Operations

5x

Financial Services

6x

Accounts Payable

7x

Document Generation

Order Modification

Captive Lease /
Loan Servicing

Captive Insurance

Real Time Data Visibility

10Q & 10K Timeline

We Expect our Pace of Investment to Scale With Operating Cash Flow Growth

20M Annual 1 TWh Annual Energy Expand Cell Production, **Vehicle Production Storage Production** Service and Charging ~\$150-175B ~\$28B Funded by Operating Estimated Cash Flow Investment to Date Total Investment

Capital Allocation

1. Daily Operations	Working Capital	2. Growth	R&D
	Captive Financing (Market Gaps)		Capital Expenditures (Growth)
	Downside Protection		
3. Opportunistic	Capital Expenditures (Elective)	4. Excess	Buyback / Dividend
	Captive Financing (Elective)		
	Acquisitions		
	Debt Reduction		

Achieving the Master Plan

Innovation Driven
Cost & Efficiency

Improved Affordability Reinvest to Achieve Unprecedented Scale Accelerate the World's Transition to Sustainable Energy

Q&A

